ALLENDALE ROBOTICS FRC TEAM 4003 - TRISONICS

PNEUMATICS (ADVANCED)

	URISOULIES 4003	Allendo Robot	ale 🙀	
FIRST	FIRST		FIRST	FIRST
LEGO [®]	LEGO		TECH	ROBOTICS
LEAGUE JR.	LEAGUE		CHALLENGE	COMPETITION
K - 3 rd	4 th - 5 th	6 th	7 th - 8 th	9 th - 12 th
Grade	Grade	Grade	Grade	Grade

AGENDA

- Quick overview of the system
- Building Tips and Practices
- Sizing Cylinders
- Calculating Air Tank Requirements
- Q&A

WHAT ARE PNEUMATICS

- Pneumatics use **pressurized gas** to effect a mechanical motion
- O Uses the power of Compressed air to create force
- o Typically gases such as air, Nitrogen, CO2
- o In FRC air is used
- Typically used for linear motion

PUTTING THE SYSTEM TOGETHER

BUILDING TIPS AND SUGGESTIONS

Tips for tube fittings:

- Use plastic push-to-connect fittings where possible(Less weight compared to brass fittings)
- Use fittings with pre-applied sealant when possible

Tips for tube fittings:

- To connect: push tube in until firmly seated
- To remove: press rim down,
 then pull tube out
- Tubes cut at an angle will leak

BUILDING TIPS AND SUGGESTIONS

Tips for teflon tape:

- Use 4 to 6 wraps of tape
- Don't use tape more than once
- Wrap tape in the right direction
- Don't allow loose pieces of tape to get into the tubing

BUILDING TIPS AND SUGGESTIONS

Tips for brass fittings:

- Brass is very soft
- Do not over-torque
- Do not use adjustable wrenches
- Use box-end wrenches where possible

CARING FOR YOUR PNEUMATIC SYSTEM

Problems maintaining pressure:

- Chronic leak
- Acute catastrophic pressure loss

Catastrophic pressure loss may be caused by:

- Tube disconnection or breakage
- Component failure

Tips for avoiding leaks:

- Use as few fittings as possible
- Perform leak test as each component is added
- Use leak test fluid

Recipe:

- Add 2 tbsp dish soap to empty spray bottle
- Fill spray bottle with water

Directions:

- Shake well
- Cover all exposed electrical parts!
- Spray directly on pressurized pneumatics

CARING FOR YOUR PNEUMATIC SYSTEM

Protect your cylinders—

- Thin wall tube can be crushed by side impacts
- Internal seals will not handle side loads
- Shafts can bend in wrong applications or with side loads
- Not repairable!

SOME CALCULATIONS

- Force of an air cylinder...
 - F=PA
 - Where P is the pressure supplied (psi) and A is the area of the bore off the cylinder (in²)
 - NOTE: When calculating the retraction force you must account for the rod area.
- Air consumption of a single stroke...
 - C=SA
 - Where S is the stroke length (in) and A is the area of the bore off the cylinder (in²)
 - NOTE: When calculating the retraction Volume you must account for the rod area.
- Volume of an air tank...
 - V=LA
 - Where L is the length of the air tank (in) and A is the area of the bore off the cylinder (in²)

SOME CALCULATIONS

- Equating pressures and volumes...
 - Where P is pressure (psi) and V is volume (in³).
 - NOTE: when calculating the needed amount of supply air tanks needed $P_1 = (Supply Pressure Working or Minimum Pressure)$

These values are approximate and do not account for air leaks and losses from airlines so be sure to incorporate a safety factor (approximately 30% more) when implementing pneumatic components.

FORCE, PRESSURE, & AREA

Cylinder Extention

- Pressure = Force / Area (P=F/A)
- o Force = Pressure X Area (F=PA)
- o Example: 30 psig in 2" diameter cylinder

Force = 30 psi X 3.14 sq-in = 94.2 lbs

FORCE, PRESSURE, & AREA

Cylinder Retraction

- Pressure = Force / Area
- o Force = Pressure X Area
- o Example: 30 psig in 2" diameter cylinder

Retract Force = 30 psi X 3.06 sq-in = 91.8 lbs

DESIGNING A SYSTEM

Design Sequence

- 1. Find the required **stroke length**
- 2. Find the force & set the operating pressure
- 3. Guess how many times you will actuate the cylinder during a typical match
- 4. Find the required **storage capacity**

DESIGNING A SYSTEM

Sample Problem

You're using an cylinder on your new FRC robot to open and close the game piece manipulator. The cylinder you plan to use has a 1" bore diameter, a 6" stroke, a ¼" diameter rod and the supplied working pressure is 60 psi.

- What is the force of the air cylinder?
- What volume of air would be used if the cylinder extended and retracted 10 times during the course of the match?
- How many air tanks (36 in³ volume) at supply pressure (120 psi) are need to supply air at 60 psi for this amount of strokes?

Find the Stroke Length

- Stroke length is defined by the application
- o Example:
 - Stroke Length: L = 6"

Find the Force and set the Operating Pressure

• Example:

- O Stroke Length:
- O Diameter:
- Rod Diameter:
- O Pressure:
- O Extend Area:
- O Extend Force:
- O Extend Volume:
- O Retract Area:
- O Retract Force:
- Extend Volume:

L = 6" D = 1 inch $D_{rod} = 0.25$ inch Puse = 60 psig = 60 lbf /in²

 $A_{Ext} = (r^2)\pi = .785 \text{ in}^2$ $F_{ext} = (P_{USe})(A) = 47.1 \text{ lbf}$ $Vext = (Aext)(L) = .785 \text{ in}^2 * 6 \text{ in} = 4.71 \text{ in}^3$

 $A_{Ret} = (r^2)\pi - (d_{rod}^2)\pi = .735 \text{ in}^2$ Fret = (Puse)(A) = 44.1 lbf Vext = (Aext)(L) = .735 in^2 * 6 in = 4.41 in^3

Guess how many times you will actuate the cylinder

Count both Extension and Retraction for a Double Acting Cylinder
 PEU = Pneumatic Energy units

o Example:

• Actuations: $N_{actuations} = 10 + 10 = 20$

o Gas use: $PEU = \sim (N_{actuations})(P_{use})(V_{cyl})$ $PEU = (10)(60 \text{ psig})(4.71 \text{ in}^3) + (10)(60 \text{ psig})(4.41 \text{ in}^3) = 5472$

This is in units of *energy*!

Find the Storage Capacity

Storage

Volume

 $V_{tank} = (L)(A) = 36 \text{ in}^3$

Pressure P_{stc}

Tanks N_{tar}

$$v_{tanks} = 2$$

Gas storage = $\sim (N_{tanks}) (P_{store}) (V_{tank})$ PEU = (2) (120 psig) (36 in³) PEU = 8640

Product Overview

This is a polypropylene plastic air tank accumulator holding 36.0 cubic inches

This tank has 1/4" NPT ports (2).

Weight: 0.64 pound

- Capacity: 36.0 cubic inches (590 ml)
- Ports: Two 174" NPT female (one on each end)
- Material: Polypropylene Plastic
- Working pressure rating: 125 psi
- Burst pressure rating: 500 psi
- Max. temperature rating: 100 F
- Length: 12.1 inches
- Diameter: 2.7 inches

Is the example design OK?

Safety factor $\eta =$

<u>Gas storage</u>	8640 in*lbf	= 1 57
Gas use	5472 in*lbf	1.07

Result:

The design should last through the match but remember there is pressure loss and other system losses that can change this.

Example 2: Energy Capacity

- Energy Capacity Example:
 - Storage Tanks
 - Volume = 18.85 cu-in (37.7 cu-in for 2 tanks)
 - Pressure = 120 psig
 - => Energy Capacity = 4524 (2 tanks)
 - Cylinder 2" dia x 24" stroke
 - Volume = 75.4 cu-in
 - Pressure = 60 psig
 - => Energy Capacity used = 4524
- Conclusion: After 2 extensions and one contraction, the pressure in the tanks drops to less than 20 psig

Example 2: Energy Capacity

	120 PSI Side	•		60 PSI Side		
PEU	Р	V	Р	V	PEU	Tot PEU
4524.0	120.0	37.7	60.0	75.4	4524.0	9048.0
2262.0	60.0	37.7	60.0	75.4	2262.0	4524.0
1131.0	30.0	37.7	60.0	75.4	1131.0	2262.0
565.5	15.0	37.7	7.5	75.4	565.5	1131.0
282.8	7.5	37.7	3.8	75.4	282.8	565.5
141.4	3.8	37.7	1.9	75.4	141.4	282.8

TOOLS FOR CALCULATIONS

Useful Calculation Spreadsheet

									Total
				Single/				Volume	Volume
			QTY Per	Double	Actuations			per	Per
	Bore	Length	Robot	Acting	Per Match	Pressure	Force	cylinder	Match
Name	(in)	(in)				(psi)	(lb)	(in ³)	(in ³)
Power Intake Crowder/Flipper	1.0625	2	2	2	10	20	17.7	1.8	70.9
Power Intake Extend/Retract	0.75	8	2	2	10	60	26.5	3.5	141.4
Gripper Open/Close	0.875	3.5	1	2	20	60	36.1	2.1	84.2
Gripper Extend/Retract	0.75	16	1	2	10	60	26.5	7.1	141.4
Shifting	0.75	0.5	2	1	10	60	26.5	0.2	4.4
							0.0	0.0	0.0

Max Tank Pressure (psi)	120
Min Tank Pressure (psi)	60
Required Volume (in ³)	395.0

Air Tank Volume (in ³)	35
Required Air Tanks	11.3

SUPPLIERS FOR PNEUMATIC COMPONENTS

AndyMark

VEXPro

- Pneumatic Control Module (PCM)
- Compressor
- Pressure Sensor
- Relief Valve
- Regulators
- Gauges

Automation Direct

- Fittings
- Valves
- Inline Pressure Gauges
- Inline Regulators
- Tubing
- Tubing Cutter (you get one free with the FIRST Voucher)

- Pneumatic Control Module (PCM)
- SMC Valves

Bimba

• Free Cylinders (limited sizes)

FIRST Choice by AndyMark

- Compressor
- PCM
- Relief Valve
- Pressure Sensor
- Tubing
- Misc.

And lots of other places

Q&A

Thank You!

Strui-

140 8

MIN STICK